特集解析・シミュレーション技術を活用した高分子材料,製品の開発

樹脂パーツ開発におけるシミュレーション技術 ~構造解析と樹脂流動解析の連携~

株式会社 ISOL エンジニアリング本部

1. はじめに

工業製品や部品の構造解析を実施するにあたって、パラ メータとして設定する材料特性は解析結果の精度に大きな 影響を与える。従来の構造解析においては、多くの構成則 (ひずみと応力の関係式)の中から適当なものを選択して. それに必要なパラメータを特定の計測結果などから同定し て用いている。また大抵の場合、ある程度の大きさの領域も しくは部品全体にわたって同じ材料特性を設定している。

一方で、コストや成形性といった利便性から現在の工業 製品の多くには樹脂部品が採用されており、その製造プロ セスには射出成形が適用されることが多い。また、工業用 材料としての樹脂はその剛性の低さが課題として挙げられ るが、ガラスなどの繊維を添加することにより特性を改善 する対策がよく用いられる (FRP = 繊維強化樹脂)。この 場合、射出成形時の流動状態の結果生じる局所的な繊維配 向によって、材料特性の強い異方性とその分布が生じてい ることが予想されるため、上述のような方法は通用しない。 また、実験によって繊維強化樹脂のすべての繊維配向状態 における材料特性を取得することも現実的ではない。

以上のことから、繊維強化樹脂の部品、製品に対する構 造解析を精度よく実施するためには、 なんらかの別の手段 を講じる必要がある。本稿では、樹脂流動解析によって得 られる繊維配向分布と、それを用いて局所的な材料特性を 予測する手法を組み合わせるアプローチを紹介する。

2. 樹脂流動解析

射出成形プロセスにおいて, 本稿では繊維配向にとって 重要な、金型キャビティへの溶融樹脂の充填過程と保圧過 程について考える。スクリュー内で可塑化された溶融樹脂 はランナー, ゲートを通って, 部品形状を有するキャビ ティ内に充填される。その際の流れ場は当然ながら3次元 的な特徴を有しており、例えば充填中の樹脂の先端(メル

トフロント) 部分においては、図1に示すような噴水流れ (Fountain Flow) と呼ばれる現象が生じることが知られ ている。また、リブ等の肉厚部分と肉薄部分が複雑に組み 合わされている部品形状をとってみても、現象を的確に捉 えるには3次元的な流れ場を考慮する必要がある。このこ とは、溶融樹脂の流れによって変動する繊維の配向状態に も大きな影響を及ぼす(図2)。

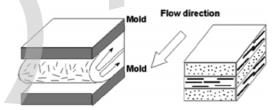


図1 噴水流れ (Fountain Flow) と繊維配向

図2 シミュレーションによって予測された3次元繊維配向分布 (伸びた楕円体=強い配向を表す)

流動解析のソフトウェアは世の中に多く存在するが、上 述のような3次元流れ場とそれによる繊維配向を適切に捉ら えるためには、ソフトウェアに対して以下の点が要求される。

- (1) 流れの現象を表す方程式について、各項を極力省略 せずに扱うこと。
- (2) 溶融樹脂の物性パラメータとして重要な粘度(温度 とせん断速度依存)や PVT 特性(圧力依存の温度と比 容積の関係)を精度よく計測しておき、それをソフト ウェアに容易に反映できること。
- (3) 計算領域をメッシュ分割する際に、なるべく精細な メッシュを用いること。